About Richard B. Langley

rss feed Email

Richard B. Langley is a professor in the Department of Geodesy and Geomatics Engineering at the University of New Brunswick (UNB) in Fredericton, Canada, where he has been teaching and conducting research since 1981. He has a B.Sc. in applied physics from the University of Waterloo and a Ph.D. in experimental space science from York University, Toronto. He spent two years at MIT as a postdoctoral fellow, researching geodetic applications of lunar laser ranging and VLBI. For work in VLBI, he shared two NASA Group Achievement Awards.

Professor Langley has worked extensively with the Global Positioning System. He has been active in the development of GPS error models since the early 1980s and is a co-author of the venerable “Guide to GPS Positioning” and a columnist and contributing editor of GPS World magazine. His research team is currently working on a number of GPS-related projects, including the study of atmospheric effects on wide-area augmentation systems, the adaptation of techniques for spaceborne GPS, and the development of GPS-based systems for machine control and deformation monitoring. Professor Langley is a collaborator in UNB’s Canadian High Arctic Ionospheric Network project and is the principal investigator for the GPS instrument on the Canadian CASSIOPE research satellite now in orbit.

Professor Langley is a fellow of The Institute of Navigation (ION), the Royal Institute of Navigation, and the International Association of Geodesy. He shared the ION 2003 Burka Award with Don Kim and received the ION’s Johannes Kepler Award in 2007.

Posts by Richard B. Langley

Delay in Setting Recently Launched Block IIF Satellite Healthy Posted on 17 Apr 2014 in the Featured Stories & GNSS News & GPS Modernization & Latest News categories.

The latest GPS Block IIF satellite, IIF-5 or SVN64 (operating as PRN30), was launched on February 21, 2014. Typically, GPS satellites are checked out and made operational within about a... Read more»

GLONASS Loses Control Again Posted on 16 Apr 2014 in the Featured Stories & GLONASS & GNSS & GNSS News & Latest News categories.

The GLONASS constellation has suffered a major problem for the second time this month. On Monday, April 14, eight GLONASS satellites were simultaneously set unhealthy for about half an hour,... Read more»

Innovation: Ground-Based Augmentation Posted on 02 Apr 2014 in the Aviation & GNSS & Innovation & Receiver Design categories.

Combining Galileo with GPS and GLONASS
While a GPS-based GBAS will offer improved navigation services for aircraft, might these services be even better if the systems were to use satellites from other constellations besides GPS? In this month’s column, the authors show how GBAS protocols might be modified to accommodate multiple constellations, offering results of preliminary tests using GPS, GLONASS, and Galileo simultaneously. Read more»

Innovation: A PET Project from Finland Posted on 01 Mar 2014 in the Innovation categories.

Automating GNSS Receiver Testing
In this month’s column, the authors discuss an automated test bench for analyzing the overall performance of multi-frequency multi-constellation GNSS receivers. Read more»

Innovation: Cycle Slips Posted on 01 Jan 2014 in the Algorithms & Methods & Innovation & Integration with Other Technologies categories.

Detection and Correction Using Inertial Aiding
A team of university researchers has developed a technique combining GPS receivers with an inexpensive inertial measuring unit to detect and repair cycle slips with the potential to operate in real time. Read more»

Innovation: Hunting for GNSS Echoes Posted on 01 Nov 2013 in the Algorithms & Methods & Innovation categories.

Analysis of Signal Tracking Techniques for Multipath Mitigation
Researchers involved with ARTEMISA describe their efforts to generate synthetic multipath of GPS L1 and Galileo E1 signals and to test different signal tracking techniques in a simulated receiver to see which techniques best minimize the effects of multipath on positioning solutions. Read more»

Innovation: Getting Closer to Everywhere Posted on 01 Oct 2013 in the Augmentation & Assistance & Innovation categories.

Accurately Tracking Smartphones Indoors
If we wish to obtain consistently usable positions indoors using a mobile phone, we can augment its GPS or GNSS receiver with other unfettered sensing technologies such as gyroscopes and accelerometers supplemented by radio signals of opportunity. But is all of this actually feasible? The authors have conducted tests of a multi-system approach to positioning indoors with favorable results. Read more»

The System: IRNSS Signal Close up Posted on 01 Sep 2013 in the Augmentation & Assistance & Galileo & GLONASS & GPS Modernization & The System categories.

IRNSS Signal Close up By Richard Langley, Steffen Thoelert, and Michael Meurer The spectrum of signals from IRNSS-1A, the first satellite in the Indian Regional Navigation Satellite System, as recorded... Read more»